Understanding In and Out of XAML in WPF

|H

1. What is XAML? Extensible Application Markup Language and pronounced “zammel” is a markup
language used to instantiate .NET objects. Although XAML is a technology that can be applied to many

different problem domains, its primary role in life is to construct WPF user interfaces.

If we’re a graphic designer, that tool is likely to be a graphical design and drawing program such as

Microsoft Expression Blend. If we’re a developer, we’ll probably start with Visual Studio.

2. Why to learn XAML: Understanding XAML is critical to WPF application design. WPF applications are
quite different from Windows Forms applications in this respect—with Windows Forms applications, we
could safely ignore the automatically generated Ul code, while in WPF applications the XAML often takes

center stage. Important task they perform are below

a. Wiring up an event handler: Attaching event handler in the most cases, for example Click on Button is
easy to do in visual studio. However once we understand how events are wired up in XAML,we’ll be able

create more sophisticated connections.

b. Defining resources: Resources are the object which once we define in XAML can be re-used in the
various places inside markup. Resources allow us to centralize and standardize formatting, and create

nonvisual objects such as templates and animations.

c. Defining control template: WPF controls are designed to be lookless, which means we can substitute
our custom visuals in place of the standard appearance. To do so, we must create our own control

template, which is nothing more than a block of XAML markup

d. Writing data binding expressions: data binding allows us to extracts data from a object and display it

in a linked element. To setup this we can add a data binding expression in XAML.

e. Defining animation: Animations are a common ingredient in XAML applications. Usually, they’re
defined as resources, constructed using XAML markup, and then linked to other controls (or triggered

through code).

3. Life before XAML: With traditional display technologies, there’s no easy way to separate the graphical

content from the code. The key problem with Windows Forms application is that every form we create



Is defined entirely in C# code. As we drop controls onto the design surface and configure them, Visual
Studio quietly adjusts the code in the corresponding form class. Sadly, graphic designers don’t have any

tools that can work with C# code.

Then solution to above problem was that the designer forced to take their content and export it to a
bitmap format. These bitmaps can then be used to skin windows, buttons, and other controls. This
approach works well for straightforward interfaces that don’t change much over time, but it’'s extremely

limiting in other scenarios.

Even if the interface is designed from scratch by a graphic designer, we’ll need to re-create it with C#
code. Usually, the graphic designer will simply prepare a mock-up that we need to translate

painstakingly into our application.

Solution to above issue is XAML: When designing a WPF application in Visual Studio, the window we’re
designing isn’t translated into code. Instead, it’s serialized into a set of XAML tags. When we run the

application, these tags are used to generate the objects that compose the user interface.

4. Type of XAML: The way XAML is been used in reference with are many, which is nothing but is an all-
purpose XML-based syntax for representing a tree of .NET objects and these objects can be button in a
window or a custom class we have defined. However XAML could be used on the other platform to re-
present non .NET objects.

Below | have discussed about subsets of XAML

a. WPF XAML: encompasses the elements that describe WPF content, such as vector graphics, controls,
and documents

b. XPS XAML: is the part of WPF XAML that defines an XML representation for formatted electronic
documents.

c. Silverlight XAML: is a subset of WPF XAML that’s intended for Silverlight applications. Silverlight is a
cross-platform browser plug-in that allows us to create rich web content.

d. WF XAML: encompasses the elements that describe Windows Workflow Foundation.

5. Understanding XMAL compilation: Solving the pain for designed cannot be a sole reason to be happy
about XAML, well it also needs to be fast in performance. XAML achieves this with BAML (binary

application markup language), which is binary representation of XMAL.



What happen when we compile XAML in visual studio, all XAML is converted into BAML and that BAML
is then embedded as resource inside the final DLL or EXE assembly. BAML is tokenized, which means
lengthier bits of XAML are replaced with shorter tokens. Not only is BAML significantly smaller, it’s also
optimized in a way that makes it faster to parse at runtime.

So do we require or is it must that this compilation happens, well no. because there might be an
scenario where it is required some of the user interface to be supplied just in time, so here possible to

use XAML without compiling it.

6. Knowing XAML Skelton:

Basic:

a. Every element in a XAML document maps to an instance of a .NET class. The name of the element
matches the name of the class exactly. For example, the element <Button> instructs WPF to create a
Button object.

b. As with any XML document, we can nest one element inside another. A button element inside a Grid
element, our user interface probably includes a Grid that contains a button inside. However, Nesting is
usually a way to express containment

c. We can set the properties of each class through attributes

Create a blank WPF page, and we will notice that visual studio adds up few lines of code, lets us

understand them.

<Window x:Class="TireControl.Windowl"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Windowl" Height="300" Width="300">
<Grid>

</Grid>
</Window>

a. This XAML includes only two elements—the top-level Window element, which represents the entire
window, and the Grid, in which we can place all our controls. Although we could use any top-level
element, WPF applications rely on just a few:

e Window

e Page (which is similar to Window, but used for navigable applications)

e Application (which defines application resources and startup settings)



b. In all XML documents, there can only be one top-level element. In the previous example, that means
that as soon as we close the Window element with the </Window> tag, we end the document. No more

content can follow.

Namespace:

It’s not enough to supply just the name, XAML parser also needs to know the .Net namespace where
this class is located. As in window can exist in several places, it might refer to system.windows.window
class or it could refer to a window class in a third party component. To figure out which class we really

want, the XAML parser examines the XML namespace that’s applied to the element.

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml

XMLNS: The xmins attribute is a specialized attribute in the world of XML that’s reserved for declaring
namespaces. This snippet of markup declares two namespaces that we’ll find in every WPF XAML
document we create:

xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation Isthe core WPF

namespace. It encompasses all the WPF classes, including the controls we use to build user
Interfaces.

xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml Itincludes various XAML utility

features that allow we to influence how our document is interpreted. This namespace is mapped to the

prefix x.

By convention, XML namespaces are often URIs (as they are here). These URIs look like they point to a
location on the Web, but they don't. It is just a naming convention to avoid any conflict.

The namespace information allows the XAML parser to find the right class. For example, when it looks at
the Window and Grid elements, it sees that they are placed in the default WPF namespace. It then
searches the corresponding .NET namespaces, until it finds System.Windows. Window and

System.Windows.Controls.Grid.

Code behind Class:

XAML allows we to construct a user interface, but in order to make a functioning application


http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

We need a way to connect the event handlers that contain our application code. XAML makes this easy

using the Class attribute that’s shown here:

<Window x:Class="TireControl.Windowl"

The x namespace prefix places the Class attribute in the XAML namespace, which means this is a more
general part of the XAML language. In fact, the Class attribute tells the XAML parser to generate a new

class with the specified name. The Window1 class is generated automatically at compile time

Visual Studio helps us out by automatically creating a partial class where we can place our event

handling code.

namespace TireControl
{
/// <summary>
/// Interaction logic for Windowl.xaml
/// </summary>
public partial class Windowl : Window
{
public Windowl ()

{

InitializeComponent () ;

}

When we compile the application, XAML that defines our user interface as such window1.xaml is
translated into CLR tyre declaration that is merged with logic in the code behind window1.xaml.cs to

form the single unit.
The InitializeComponent() Method:

Window1 .cs contains a default constructor, which call this method, when we create new instance of the
class. The InitializeComponent()method plays a key role in WPF applications. For that reason, we should
never delete the InitializeComponent() call in our window’s constructor. Similarly, if we add another

constructor, make sure it also calls InitializeComponent().

It work like this way that when we compile our application essentially, all InitializeComponent() does is
call the LoadComponent() method of the System.Windows.Application class. The LoadComponent ()
method extracts the BAML (the compiled XAML) from our assembly and uses it to build our user
interface. As it parses the BAML, it creates each control object, sets its properties, and attaches any

event handlers.



7. Ways to create a WPF application: There are three distinct coding styles that we can use to create a
WPF application.

a. Code-only. This is the traditional approach used in Visual Studio for Windows Forms applications. It
generates a user interface through code statements. Code-only development is a less common (but still
fully supported) avenue for writing a WPF application without any XAML. The obvious disadvantage to

code-only development is that it has the potential to be extremely tedious.

Let’s write little code in code behind to understand this; add a class and not an existing item template.

[To create this example, we must code the Window1 class from scratch (right-click the Solution
Explorer, and choose Add > Class to get started). We can’t choose Add > Window, because that will
Add a code file and a XAML template for our window, complete with an automatically generated

Initialize-Component () method]

public partial class Windowl : Window
{

private Button buttonl;

public Windowl ()

{
InitializeComponent () ;
// Configure the form.
this.Width = this.Height = 285;
this.Left = this.Top = 100;
this.Title = "Code-Only Window";
// Create a container to hold a button.
DockPanel panel = new DockPanel ();
// Create the button.
buttonl = new Button();
buttonl.Content = "Please click me.";
buttonl.Margin = new Thickness (30);
// Attach the event handler.
buttonl.Click += buttonl Click;
// Place the button in the panel.
IAddChild container = panel;
container.AddChild (buttonl) ;
// Place the panel in the form.
container = this;
container.AddChild (panel) ;

}

private void buttonl Click(object sender, RoutedEventArgs e)

{
buttonl.Content = "Thank you.";

}



To get this application started, we can use a Main() method with code like this:

public class Program : Application

{
[STAThread () ]
static void Main ()

{
Program app = new Program();
app.MainWindow = new Windowl () ;
app.MainWindow.ShowDialog () ;

b. Code and uncompiled markup (XAML). This is a specialized approach that makes sense in certain
scenarios where we need highly dynamic user interfaces. We load part of the user interface from a
XAML file at runtime using the XamlReader class from the System.Windows.Markup namespace.

One of the most interesting ways to use XAML is to parse it on the fly with the XamIReader. It’s like at

runtime, we can load this content into a live window to create the same window.

c. Code and compiled markup (BAML). This is the preferred approach for WPF, and the one that Visual
Studio supports. We create a XAML template for each window and this XAML is compiled into BAML and
embedded in the final assembly. At runtime the compiled BAML is extracted and used to regenerate the
user interface. This is the method used by Visual Studio, and it has several advantages.

a. Reading BAML at runtime is faster than reading XAML.

b. Deployment is easier. Because BAML is embedded in our assembly as one or more resources, there’s

no way to lose it.

Let us understand how compilations happen.

Visual Studio uses a two-stage compilation process when we’re compiling a WPF application.

Step 1. The first step is to compile the XAML files into BAML using the xamlc.exe compiler. For example,
if our project includes a file name Window1.xaml, the compiler will create a temporary file named
Window1.baml and place it in the obj\Debug subfolder (in our project folder). At the same time, a partial
class is created for our window, using the language of our choice. For example, if we’re using C#, the

compiler will create a file named Window1.g.cs in the obj\Debug folder. The g stands for generated.



The partial class includes three things:
¢ Fields for all the controls in our window.

¢ Code that loads the BAML from the assembly, thereby creating the tree of objects. This happens when

the constructor calls Initialize Component ().

¢ Code that assigns the appropriate control object to each field and connects all the event handlers. This

happens in a method named Connect (), which the BAML parser calls every time it finds a named object.

Step 2::When the XAML-to-BAML compilation stage is finished, Visual Studio uses the appropriate
language compiler to compile our code and the generated partial class files. In the case of a C#
application, it’s the csc.exe compiler that handles this task. The compiled code becomes a single

assembly Windowl.exe) and the BAML for each window is embedded as a separate resource.

8 What is Loose XAML: Loose XAML files can be opened directly in Internet Explorer? (Assuming we’ve

installed the .NET Framework 3.0 or are running Windows Vista, which has it preinstalled?)
To try out a loose XAML page, take a .xaml file and make these changes:

e Remove the Class attribute on the root element.

* Remove any attributes that attach event handlers (such as the Button.Click attribute).

¢ Change the name of the opening and closing tag from Window to Page. Internet Explorer can only

show hosted pages, not stand-alone windows.

Thanks for reading

http://www.vishalnayan.wordpress.com



http://www.vishalnayan.wordpress.com/

